

 Navigation

 	
 index

 	flask_table latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/flask-table/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/flask-table/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	flask_table latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.4.

 _static/minus.png

search.html

 Navigation

 		
 index

 		flask_table latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment-close.png

README.html

 Navigation

 		
 index

 		flask_table latest documentation »

Flask Table

Because writing HTML is fiddly and all of your tables are basically
the same.

[image: Build Status] [https://travis-ci.org/plumdog/flask_table]
[image: Coverage Status] [https://coveralls.io/r/plumdog/flask_table?branch=master]

Quick Start

import things
from flask_table import Table, Col

Declare your table
class ItemTable(Table):
 name = Col('Name')
 description = Col('Description')

Get some objects
class Item(object):
 def __init__(self, name, description):
 self.name = name
 self.description = description
items = [Item('Name1', 'Description1'),
 Item('Name2', 'Description2'),
 Item('Name3', 'Description3')]
Or, equivalently, some dicts
items = [dict(name='Name1', description='Description1'),
 dict(name='Name2', description='Description2'),
 dict(name='Name3', description='Description3')]

Or, more likely, load items from your database with something like
items = ItemModel.query.all()

Populate the table
table = ItemTable(items)

Print the html
print(table.__html__())
or just {{ table }} from within a Jinja template

Which gives something like:

<table>
<thead><tr><th>Name</th><th>Description</th></tr></thead>
<tbody>
<tr><td>Name1</td><td>Description1</td></tr>
<tr><td>Name2</td><td>Description2</td></tr>
<tr><td>Name3</td><td>Description3</td></tr>
</tbody>
</table>

Or as HTML:

		Name		Description

		Name1		Description1

		Name2		Description2

		Name3		Description3

Extra things:

		The attribute used for each column in the declaration of the column
is used as the default thing to lookup in each item.

		The thing that you pass when you populate the table must:
		be iterable

		contain dicts or objects - there’s nothing saying it can’t contain
some of each

		There are also LinkCol and ButtonCol that allow links and buttons,
which is where the Flask-specific-ness comes in.

		There are also DateCol and DatetimeCol that format dates and
datetimes.

		Oh, and BoolCol, which does Yes/No.

		But most importantly, Col is easy to subclass.

Included Col Types

		OptCol - converts values according to a dictionary of choices. Eg
for turning stored codes into human readable text.

		BoolCol (subclass of OptCol) - converts values to yes/no.

		DateCol - for dates (uses format_date from babel.dates).

		DatetimeCol - for date-times (uses format_datetime from
babel.dates).

		LinkCol - creates a link by specifying an endpoint and url_kwargs.

		ButtonCol (subclass of LinkCol) creates a button that posts the
the given address.

Subclassing Col

(Look in examples/subclassing.py for a more concrete example)

Suppose our item has an attribute, but we don’t want to output the
value directly, we need to alter it first. If the value that we get
from the item gives us all the information we need, then we can just
override the td_format method:

class LangCol(Col):
 def td_format(self, content):
 if content == 'en_GB':
 return 'British English'
 elif content == 'de_DE':
 return 'German'
 elif content == 'fr_FR':
 return 'French'
 else:
 return 'Not Specified'

If you need access to all of information in the item, then we can go a
stage earlier in the process and override the td_contents method:

from flask import Markup

def td_contents(self, i, attr_list):
 # by default this does
 # return self.td_format(self.from_attr_list(i, attr_list))
 return Markup.escape(self.from_attr_list(i, attr_list) + ' for ' + item.name)

At present, you do still need to be careful about escaping things as
you override these methods. Also, because of the way that the Markup
class works, you need to be careful about how you concatenate these
with other strings.

Setting a class on the <table> element

If you set a classes attribute on the Table class, this gets added as
a class on the <table> element. The classes attribute should be an
iterable of strings, all of which will be added.

For example, if:

class MyTable(Table):
 classes = ['class1', 'class2']
 ...

Then the table created would be:

<table class="class1 class2">
 ...
</table>

Manipulating <tr>s

(Look in examples/rows.py for a more concrete example)

Suppose you want to change something about the tr element for some or
all items. You can do this by overriding your table’s tr_format
method. By default, this method returns:

'<tr>{}</tr>'

which betrays the fact that it has .format() called on it, to put in
the tds. If you override the method, keep that in mind.

So, we might want to use something like:

class ItemTable(Table):
 name = Col('Name')
 description = Col('Description')

 def tr_format(self, item):
 if item.important():
 return '<tr class="important">{}</tr>'
 else:
 return '<tr>{}</tr>'

which would give all trs for items that returned a true value for the
important() method, a class of “important”.

Dynamically Creating Tables

(Look in examples/dynamic.py for a more concrete example)

You can define a table dynamically too.

TableCls = create_table('TableCls')\
 .add_column('name', Col('Name'))\
 .add_column('description', Col('Description'))

which is equivalent to

class TableCls(Table):
 name = Col('Name')
 description = Col('Description')

but makes it easier to add columns dynamically.

For example, you may wish to only add a column based on a condition.

TableCls = create_table('TableCls')\
 .add_column('name', Col('Name'))

if condition:
 TableCls.add_column('description', Col('Description'))

which is equivalent to

class TableCls(Table):
 name = Col('Name')
 description = Col('Description', show=condition)

thanks to the show option. Use whichever you think makes your code
more readable. Though you may still need the dynamic option for
something like

TableCls = create_table('TableCls')
for i in range(num):
 TableCls.add_column(str(i), Col(str(i)))

Sortable Tables

(Look in examples/sortable.py for a more concrete example)

Define a table and set its allow_sort attribute to True. Now all
columns will be default try to turn their header into a link for
sorting, unless you set allow_sort to False for a column.

You also must declare a sort_url method for that table. Given a
col_key, this determines the url for link in the header. If reverse is
True, then that means that the table has just been sorted by that
column and the url can adjust accordingly, ie to now give the address
for the table sorted in the reverse direction. It is, however,
entirely up to your flask view method to interpret the values given to
it from this url and to order the results before giving the to the
table. The table itself will not do any reordering of the items it is
given.

class SortableTable(Table):
 name = Col('Name')
 allow_sort = True

 def sort_url(self, col_key, reverse=False):
 if reverse:
 direction = 'desc'
 else:
 direction = 'asc'
 return url_for('index', sort=col_key, direction=direction)

The Examples

The examples directory contains a few pieces of sample code to show
some of the concepts and features. They are all intended to be
runnable. Some of them just output the code they generate, but some
(just one, sortable.py, at present) actually creates a Flask app
that you can access.

You should be able to just run them directly with python, but if you
have cloned the repository for the sake of dev, and created a
virtualenv, you may find that they generate an import error for
flask_table. This is because flask_table hasn’t been installed,
and can be rectified by running something like
PYTHONPATH=.:./lib/python3.3/site-packages python examples/simple.py,
which will use the local version of flask_table
including any changes.

Also, if there is anything that you think is not clear and would be
helped by an example, please just ask and I’ll happily write one. Only
you can help me realise which bits are tricky or non-obvious and help
me to work on explaining the bits that need explaining.

Other Things

At the time of first writing, I was not aware of the work of
Django-Tables. However, I have now found it and started adapting ideas
from it, where appropriate. For example, allowing items to be dicts as
well as objects.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

